An Inhibitor of Nonhomologous End-Joining Abrogates Double-Strand Break Repair and Impedes Cancer Progression
نویسندگان
چکیده
DNA Ligase IV is responsible for sealing of double-strand breaks (DSBs) during nonhomologous end-joining (NHEJ). Inhibiting Ligase IV could result in amassing of DSBs, thereby serving as a strategy toward treatment of cancer. Here, we identify a molecule, SCR7 that inhibits joining of DSBs in cell-free repair system. SCR7 blocks Ligase IV-mediated joining by interfering with its DNA binding but not that of T4 DNA Ligase or Ligase I. SCR7 inhibits NHEJ in a Ligase IV-dependent manner within cells, and activates the intrinsic apoptotic pathway. More importantly, SCR7 impedes tumor progression in mouse models and when coadministered with DSB-inducing therapeutic modalities enhances their sensitivity significantly. This inhibitor to target NHEJ offers a strategy toward the treatment of cancer and improvement of existing regimens.
منابع مشابه
Double strand break repair.
DNA double-strand breaks (DSBs) are the most dangerous form of DNA damage and can lead to death, mutation, or malignant transformation. Mammalian cells use three major pathways to repair DSBs: homologous recombination (HR), classical nonhomologous end joining (C-NHEJ), and alternative end joining (A-NHEJ). Cells choose among the pathways by interactions of the pathways with CtIP and 53BP1. HR i...
متن کاملEnd-joining repair of double-strand breaks in Drosophila melanogaster is largely DNA ligase IV independent.
Repair of DNA double-strand breaks can occur by either nonhomologous end joining or homologous recombination. Most nonhomologous end joining requires a specialized ligase, DNA ligase IV (Lig4). In Drosophila melanogaster, double-strand breaks created by excision of a P element are usually repaired by a homologous recombination pathway called synthesis-dependent strand annealing (SDSA). SDSA req...
متن کاملDeficient nonhomologous end-joining activity in cell-free extracts from Brca1-null fibroblasts.
BRCA1 ensures genomic stability, at least in part, through a functional role in DNA damage repair. BRCA1 interacts with the Rad50/Mre11/Nbs1 complex that occupies a central role in DNA double-strand break repair mediated by homologous recombination and nonhomologous end joining (NHEJ). NHEJ can be catalyzed by mammalian whole cell extract in a reaction dependent upon DNA ligase IV, Xrcc4, Ku70,...
متن کاملClassical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes
DNA double-strand breaks (DSBs) leading to loss of nucleotides in the transcribed region can be lethal. Classical non-homologous end-joining (C-NHEJ) is the dominant pathway for DSB repair (DSBR) in adult mammalian cells. Here we report that during such DSBR, mammalian C-NHEJ proteins form a multiprotein complex with RNA polymerase II and preferentially associate with the transcribed genes afte...
متن کاملSFPQ•NONO and XLF function separately and together to promote DNA double-strand break repair via canonical nonhomologous end joining
A complex of two related mammalian proteins, SFPQ and NONO, promotes DNA double-strand break repair via the canonical nonhomologous end joining (c-NHEJ) pathway. However, its mechanism of action is not fully understood. Here we describe an improved SFPQ•NONO-dependent in vitro end joining assay. We use this system to demonstrate that the SFPQ•NONO complex substitutes in vitro for the core c-NHE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 151 شماره
صفحات -
تاریخ انتشار 2012